题目:
Rotate an array of n elements to the right by k steps.
For example, with n = 7 and k = 3, the array [1,2,3,4,5,6,7]
is rotated to [5,6,7,1,2,3,4]
.
Note:
Try to come up as many solutions as you can, there are at least 3 different ways to solve this problem.Related problem:
Credits:
Special thanks to for adding this problem and creating all test cases.
链接:
题解:
数组移动问题。可以参考<编程珠玑>里利用三次reverse达成数组向左移动的方法。向右移动k step相当于向左移动数组长度nums.length - k。 要注意提前取摸,使k成为一个合理的值。
Time Complexity - O(n), Space Complexity - O(1)。
public class Solution { public void rotate(int[] nums, int k) { k %= nums.length; k = nums.length - k; reverse(nums, 0, k - 1); reverse(nums, k, nums.length - 1); reverse(nums, 0, nums.length - 1); } private void swap(int[] nums, int l, int r){ int temp = nums[l]; nums[l] = nums[r]; nums[r] = temp; } private void reverse(int[] nums, int l, int r){ while(l <= r) swap(nums, l ++, r --); }}
Update:
依然是三步反转法,先反转整个数组,再翻转0 ~ k - 1, 最后翻转 k ~ n - 1
public class Solution { public void rotate(int[] nums, int k) { if(nums == null || nums.length == 0) return; int n = nums.length; k %= n; reverse(nums, 0, n - 1); reverse(nums, 0, k - 1); reverse(nums, k, n - 1); } private void reverse(int[] nums, int lo, int hi) { while(lo < hi) swap(nums, lo++, hi--); } private void swap(int[] nums, int lo, int hi) { int tmp = nums[lo]; nums[lo] = nums[hi]; nums[hi] = tmp; }}
二刷:
三步反转法.
Java:
Time Complexity - O(n), Space Complexity - O(1)。
public class Solution { public void rotate(int[] nums, int k) { if (nums == null || nums.length == 0 || k == 0) { return; } int len = nums.length; k %= len; reverse(nums, 0, len - 1); reverse(nums, 0, k - 1); reverse(nums, k, len - 1); } private void swap(int[] nums, int i, int j) { int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp; } private void reverse(int[] nums, int i, int j) { while (i < j) { swap(nums, i++, j--); } }}
三刷:
Java:
public class Solution { public void rotate(int[] nums, int k) { if (nums == null || nums.length == 0 || k <= 0) return; int len = nums.length; k %= len; reverse(nums, 0, len - 1); reverse(nums, 0, k - 1); reverse(nums, k, len - 1); } private void reverse(int[] nums, int i, int j) { while (i < j) { int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp; i++; j--; } }}
Reference: